Star in a Box

Exploring the lifecycle of stars

Guide to this presentation

White slides are section headings, and are hidden from the presentation. Show or hide the slides in each section as appropriate to the level required.

Rough guide to the levels:

• Beginner: KS3

• Intermediate: KS4 (GCSE)

Advanced: KS5 (AS/A level)

Introduction

Basics of what a star is and how we observe them.

Level: Beginner +

What is a star?

- A cloud of gas, mainly hydrogen and helium
- The core is so hot and dense that nuclear fusion can occur.
- The fusion converts light elements into heavier ones

Every star is different

- All the stars in the night sky are different
- Brightness:
 - Tells us how luminous the star is, i.e. How much energy is being produced in the core
- Colour:
 - Tells us the surface temperature of the star

Units of luminosity

- We measure the luminosity of every day objects in Watts.
 - How bright is a light bulb?
- By comparison, the Sun outputs:
 - 380,000,000,000,000,000,000,000 Watts
 - (380 million million million Watts!)
 - This is easier to right as 3.8 x 10²⁶ Watts
- To make things easier we measure the brightness of stars relative to the Sun.

Units of temperature

- Temperature is measured in Kelvin
- The Kelvin temperature scale is the same as the Celsius scale, but starts from -273°.
 - This temperature is known as "absolute zero"

Measuring the temperature

- The temperature of a star is indicated by its colour
- Blue stars are hot, and red stars are cold

Black Body Radiation

More detail about the colour and temperature of a star, using black body radiation.

Level: Advanced +

Black Body radiation

- A "black body" is a perfect emitter and absorber of light
- It emits light at a range of wavelengths which is dependent on its temperature

Blackbody Radiation

Wein's Displacement Law

 The peak intensity of the light is related to the temperature:

Temperature (K) = Wien's constant (K.m) / peak wavelength (m)

$$T = \frac{b}{\lambda_{max}}$$

(b = 0.002898 m.K)

How hot is the Sun

Here is a graph of the Sun's energy output

How hot is the Sun?

Hertzsprung-Russell Diagram

An introduction to the H-R diagram, on which various stars will be plotted – try to get the students to suggest where they might appear before they are plotted.

Level: Beginner +

The Hertzsprung Russell Diagram

 We can compare stars by showing a graph of their temperature and luminosity

Temperature (Kelvin)

Temperature (Kelvin)

Temperature (Kelvin)

Temperature (Kelvin)

Temperature (Kelvin)

Temperature (Kelvin)

Star in a Box

At this point, run star in a box to explore the Hertzsprung-Russell diagram for different mass stars.

Level: Beginner +

Nuclear fusion

The processes taking place in the centre of a star.

Level: Intermediate +

Nuclear fusion

- The luminosity of a star is powered by nuclear fusion taking place in the centre of the star
 - The temperature and density are sufficient to allow nuclear fusion to occur.
 - Stars are primarily composed of hydrogen, with small amounts of helium.
 - They are so hot that the electrons are stripped from the atomic nuclei.
 - This ionised gas is called a plasma.

The proton-proton chain

 At temperatures above 4 million Kelvin hydrogen nuclei fuse into helium

The CNO cycle

 At temperatures above 17million Kelvin the star can use carbon, nitrogen and oxygen to help convert hydrogen into helium.

Running out of hydrogen

- The star is kept in a delicate balance between gravity trying to collapse it and radiation pushing it outwards.
- As the hydrogen runs out, the energy released from fusion decreases and the gravity causes the star to collapse.
- If the star is massive enough the core temperature increases until helium fusion starts.

Helium burning

 At temperatures above 100 million Kelvin helium can be fused to produce carbon. This reaction is called the "Triple Alpha process"

Heavier elements

- Helium is fused with carbon to make heavier elements:
 - oxygen, neon, magnesium, silicon, sulphur, argon, calcium, titanium, chromium and iron
- It's impossible to make elements heavier than through nuclear fusion without putting in more energy.

Running out of helium

- Eventually the helium is exhausted, and the star collapses again.
- If it is massive enough, then the temperature increases enough to allow carbon fusion.
- The cycle repeats, fusing heavier elements each time, until the core temperature cannot rise any higher.
- At this point, the star dies.

Burning heavier elements

- Heavier elements undergo fusion at even higher core temperatures
 - Carbon: 500 million Kelvin
 - Neon: 1.2 billion Kelvin
 - Oxygen: 1.5 billion Kelvin
 - Silicon: 3 billion Kelvin

Efficiency of fusion

Level: Advanced

Hydrogen fusion

- The proton-proton chain turns six hydrogen nuclei into one helium nucleus, two protons, and two positrons (anti-electrons)
- The energy released per reaction is tiny, and is measured in "Mega electron Volts", or MeV.
 - $1 \text{ MeV} = 1.6 \times 10^{-13} \text{ Joules}$
- Each proton-proton chain reaction releases
 26.73 MeV

Atomic masses

- The mass of the output is less than the mass of the input, so at every reaction the star loses mass.
- Just like the energies, the masses involved are tiny, measured in "atomic mass units" or u.
 - $-1 u = 1.661 \times 10^{-27} kg$

Mass loss

- Mass of a proton (p): 1.007276 u
- Mass of a positron (e⁺): 0.000549 u
- Mass of a helium nucleus (He): 4.001505 u

How much mass is lost in every reaction?

• $0.026501 \text{ u} = 4.4018 \times 10^{-29} \text{ kg}$

Helium burning

- Helium fusion releases 7.275 MeV per reaction
- Carbon-12 has a mass of exactly 12 u. How much mass is lost in the Triple alpha reaction?

• $0.004515 \text{ u} = 7.499415 \text{ x} 10^{-30} \text{ kg}$