MOW OLD IS THIS OBJECT?

How many craters can you count inside the red box?

I found \square craters in the red box.

It takes 250,000,000 years for one crater to form on Charon.
That means this part of Charon's surface is:
(250,000,000 years per crater)
X
(____craters) $=$

MOW OLD IS THIS OBJECT?

How many craters can you count inside the red box?

I found craters in the red box.

It takes 250,000,000 years for one crater to form on Pluto.
That means this part of Pluto's surface is:
(250,000,000 years per crater)

X
(___ craters) $=$

HOW OLD IS THIS OBJECT?

How many craters can you count inside the red box?

I found \qquad craters in the red box.

It takes 200,000,000 years for one crater to form on the Moon.
That means this part of the Moon's surface is:
(200,000,000 years per crater)
X
$(\ldots-\quad$ craters $)=$

HOW OLD IS THIS OBJECT?

How many craters can you count inside the red box?

I found \qquad craters in the red box.

It takes 800,000,000 years for one crater to form on the near side of the Moon.

That means this part of the Moon's surface is:
(800,000,000 years per crater)
X
$\left(\ldots _\right.$craters $)=$

HOW OLD IS THIS OBJEGT?

How many craters can you count inside the red box?

I found \square craters in the red box.

It takes 10,000,000 years for one crater to form on Mercury.
That means this part of Mercury's surface is:
(10,000,000 years per crater)
$\underset{\left(\ldots _ \text {craters }\right)=}{c}$

