Seminar series

A re-analysis of Kepler planet candidates, vetting with NRES

Jason Eastman, Las Cumbres Observatory Global Telescope

24 Apr 2014 - 15:30

The Kepler mission has been a tremendous success in the field of exoplanets, but the highly-uncertain stellar surface gravity, unknown planetary eccentricity, and prohibitive telescope time required to measure them are widely understood to be the bottleneck to follow-up. Using only Kepler data and the stellar effective temperature from the Kepler Input Catalog (KIC), the latest version of my exoplanet fitting software, EXOFAST, typically derives a constraint on the stellar surface gravity exceeding the precision of the KIC by a factor of three and, in some cases, up to a factor of 15. My analysis reduces the uncertainties in the fundamental planet parameters by similar factors, is in agreement with asteroseismic results, simultaneously constrains the planetary eccentricity, and derives a more complete list of system properties with MCMC-derived uncertainties, all while greatly reducing the need for expensive follow-up observations. Finally, I will discuss NRES, the Network of Robotic Echelle Spectrographs, which I am building at the Las Cumbres Observatory Global Telescope. When completed in 2015, I will use it to get measure the logg for many KOIs. When coupled with my EXOFAST analysis described above, a precise and independent logg is a robust identifier of false positives in the Kepler sample.

LCO Seminar Series,
6740 Cortona Dr, Suite 102,