Modular construction for simplified assembly, alignment and deployment. Each telescope is deployed as a few pre-aligned components, and is typically operating about 1-week after arrival at the prepared site.
Large steel pieces were designed at LCO and built by Rettig Machine, Redlands CA. These include:
Triangular Base, tilted for latitude, on steel pedestals bolted to a concrete pier inside each dome. The primary mirror is about 2m above ground level
RA "sandwich", containing the drive-side and following steel rollers for the C-Ring, drive dust cover and encoders
2m diameter C-ring on one direct-driven RA roller and one following roller; the C-ring is lifted & locked above its rollers for shipping.
Dome and telescope can Slew to and track on any source within 30-sec.
15° horizon limit (AirMass=3.8), including HA limits of -4.6h to +4.6h
Direct Dec drive to a sector wheel, with an additional encoder disk. Drive motors, encoders and servo control system are the same for 1-meter, 0.4-meter and 0.8-meter (BOS) telescopes.
RA and DEC Energy Chains for cooling lines, data and science fiber feeds.
The main elements of the Optical Tube Assembly (OTA) are:
Steel Mirror Cell containing 18-point whiffle tree and central hub primary support system
the Mirror Cell forms the main load bearing structure for the OTA.
Telescopes are shipped with complete mounts, drives and mirror cells, then optics and instruments added.
Lightweight Hextek (Tucson, Arizona) Borosilicate mirrors polished and coated (Al overcoated with Quartz) by LZOS in Russia
Roll-type mirror cover and Hartmann screen just above the primary
Primary stray-light baffle assembly
Carbon Fiber truss assembly supporting an invar secondary spider support
3-axis M2 assembly for focus and remote tilt collimation
Secondary stray light baffle assembly
Support for the main science instrument in a straight-through cassegrain port, 0.8deg field of view with doublet corrector.
The final science imager will use a Fairchild 4K CCD with fast readout and flexible observing modes; 27-arcmin field of view with 0.4" pixels
Support for 4 off-axis fixed ports for autoguiding, fast-photometry and fiber feed for a bench-mounted high resolution spectrograph (NRES) at each site.
LCO has developed a comprehensive embedded control system based on the Blackfin processor family, to enable
networked control of motors, fans and all mechanisms such as focus, collimation, filter wheels, covers, and all sensors such as temperature and position probes.
The Blackfin architecture also enables us to design "smart" power modules to support power cycling and current monitoring of each sub-system.
Support for up to four instrument electronics crates below each mirror cell, for control of all instrumentation, fans, sensors and monitoring equipment
The main elements of the Facility Control System (common to all telescope classes) are
a Java-based Telescope Control System (jTCS) utilizing the Java Agent DEvelopment (JADE) framework, providing:
an Astrometric agent and guiding based on the TPK kernel, using Astrometry.Net for automatic RT WCS fitting & Tpoint modeling
axes control agents to servo on the latest target coordinates
agents to control all enclosure and telescope systems, including focus - automatically adjusted as a function of temperature and Zenith Angle
agents monitoring IERS bulletins, and to configure each telescope, instruments and focal plane
agents for multiple instrument and guider selection, filter wheels, exposure and subsystem control for requested observations
RT Transparency agent compares magnitudes of stars measured in each field (sextractor) to known values from Landolt, Stetson, Sloan, Tycho, APASS.
Agents monitor, and will attempt to recover each susbsytem, including power-cycling if necessary, to maintain autonomous operations.
All data are stored in a telemetry database, which can be graphed in RT at the web URL level to analyze performance.
Proposal Observation Network Database (POND) to monitor observations from request to completion
Flash reduced data available on-site for quick checks and quality monitoring: image quality, WCS and transparency