Skip to content

Where Stars Live

Galaxies

Almost all stars are located in galaxies. When galaxies interact with each other, a very small number of stars may get lost and end up outside of a galaxy. However, because star formation requires relatively dense clouds of gas, which are only found in galaxies, the vast majority of stars are found in galaxies.

The Southern Pinwheel Galaxy

The Southern Pinwheel Galaxy, Messier 83. Data from 1m telescopes at the LCO Chile and South Africa nodes. Observer: BJ Fulton. Image processing: Ajay Narayanan

Until about 100 years ago, the Milky Way Galaxy was thought to be only a few thousand light years across, and most thought it was the entire universe. Other galaxies had been discovered, but they were thought to be smaller objects within our galaxy.

The first galaxies were identified in the 17th Century by the French astronomer Charles Messier, although at the time he did not know what they were. Messier, who was a keen observer of comets, spotted a number of other fuzzy objects in the sky which he knew were not comets. Worried that other comet hunters might be similarly confused, he compiled a list to prevent their misidentification. Messier's list (where objects are identified by M for Messier, followed by a number, e.g. M51) contained information on 110 star clusters and “spiral nebulae” (galaxies) but it was almost 300 years before astronomers figured out what the fuzzy “spiral nebulae” actually were.

Some people argued that these nebulae were “island universes” - objects like our Milky Way galaxy, but external to it. Others disagreed, and thought that these spiral objects were clouds of gas within the Milky Way. The argument went on until the 1920s, when the American astronomer Edwin Hubble finally measured the distance to one of these spiral nebulae.

In 1923 Hubble was studying the Andromeda "Nebula" (now called the Andromeda Galaxy), when he realised that one of the objects he was observing was in fact a Cepheid variable. Cepheids are stars whose brightness changes periodically over time, and they had been discovered by the American astronomer, Henrietta Leavitt, in the early 1900ʼs. Leavitt found what is now known as the Period-Luminosity (P-L) relationship, a link between the luminosity (brightness) of a Cepheid and its period. By measuring the period of a Cepheid (by observing itʼs brightness changes over several days or weeks), the P-L relationship can be used to determine itʼs actual brightness. Hubble used the P-L relation to find the distance to the Cepheid he was studying in M31, and proved that it was located outside of our own Galaxy. This finally ended the debate on the nature of the spiral nebulae – they were indeed distant galaxies like our Milky Way.

Hubble continued his study of galaxy distances, using Cepheids as his measuring tool, before publishing his results in 1929. In his paper, Hubble plotted a graph of the velocity of galaxies (obtained from determining the redshift of the spectra of these galaxies) against their distances (from Cepheid variabes). This plot showed that most galaxies are moving away (receding) from us, but also that the speed at which they are moving away (the recessional velocity) is proportional to their distance – distant galaxies recede faster than nearby ones. This became known as Hubbleʼs Law. Hubbleʼs initial estimates for the recessional velocity of galaxies was very high, because atthe time no-one knew that there were actually several different types of Cepheid variables, with slightly different Period-Luminosity relationships. However, recent advances in astronomy have now narrowed down the value of the slope of the graph (called “Hubbleʼs constant”), and results are converging to an accepted value of ~65 km/s/Mpc (i.e. galaxies recede by an extra 65 km/s for every Megaparsec they are away from us). 

Types of Galaxies

Galaxies come in many different shapes and sizes ranging from dwarf galaxies with as few as 107 stars, to giants with 1012 stars. Galaxies range from 1,000 to 100,000 parsecs in diameter and are usually separated by millions of parsecs. Hubble invented a classification of galaxies and grouped them into four classes: spirals, barred spirals, ellipticals and irregulars. He classified spiral and barred spiral galaxies further according to the size of their central bulge and the texture of their arms. A large central bulge and broad central arms corresponds to a, while a small central bulge and well defined spiral arms corresponds to c. The Hubble classification, often called the tuning fork diagram, is still used today to describe galaxies

Hubble Tuning Fork diagram. On the left are the Ellipticals - E0, E2 and E5. In the center is S0 (lenticular galaxies), the in between point of ellipticals and spirals. Then there are two branches coming out from S0 - Normal spirals (Sa, Sb, and Sc) and Barred spirals (SBa, SBb and SBc).

Image credit: LCO

When Hubble devised his classification scheme, he thought that spiral galaxies evolved from elliptical ones. We now know that the tuning fork diagram is an arrangement of galaxies according to their rotation. Spiral galaxies rotate rapidly, while elliptical ones have little or no rotation. We also know that elliptical galaxies probably form as a result of spiral galaxies colliding.

Structures Within Galaxies

Galaxies have gravitationally bound collections of stars in them. One type of these collections is called a globular cluster. Globular clusters contain hundreds of thousands of tighly gravitationally bound stars. They normally exist near the center of a galaxy and orbit its core.They contain relatively old stars, and their formation is not well understood.

Open or galactic clusters are groups of10s, 100s or sometimes 100s of stars that were born from the same initial cloud of gas and dust. When they are young (a few million or tensof millions of years old), these clusters contain some very large,bright stars (called O or B-type stars). The very youngest clustersoften still contain theremains of the gas cloud from which the stars were born and this is seen as nebulosity. 

NGC 2264 nebula

NGC2264 taken at LCO Chile node by BJ Fulton

Cluster stars are very useful to astronomers because they were all formed from the same giant cloud so they have the same chemistry. They are also all at about the same distance from us. When observing a group of stars in a cluster, astronomers can assume they are all made of the same stuff, and they are all the same distance away from us – so any differences between them are really caused by their different mass.

Distribution of Galaxies

Galaxies are not distributed randomly throughout the universe, but are grouped in graviationally bound clusters. These clusters are called poor or rich depending on how many galaxies they contain. Poor clusters are often called groups. The Milky Way is part of a poor cluster called the Local Group which contains about 50 galaxies including dwarf galaxies.

Clusters are then grouped together in superclusters which contain dozens of clusters. Superclusters are up to 30 Mpc across. Recent observations show that superclusters are arranged in sheets with huge voids in between, and that matter in the universe is arranged in a filamentary structure.